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We study theoretically phonon-assisted relaxation processes in a system consisting of one or two electrons
confined in two vertically stacked self-assembled quantum dots. The calculation is based on a k ·p approxima-
tion for single-particle wave functions in a strained self-assembled structure. From these, two-particle states are
calculated by including the Coulomb interaction and the transition rates between the lowest-energy eigenstates
are derived. We take into account phonon couplings via deformation potential and piezoelectric interaction and
show that they both can play a dominant role in different parameter regimes. Within the Fermi golden rule
approximation, we calculate the relaxation rates between the lowest-energy eigenstates which lead to thermal-
ization on a picosecond time scale in a narrow range of dot sizes.
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I. INTRODUCTION

Structures composed of two closely spaced quantum dots
�QDs� attract much attention motivated by their rich physical
properties as well as by possible applications in nanoelec-
tronics or quantum computing. A major factor that deter-
mines the properties of such a system is the electronic cou-
pling between the dots. For closely spaced dots, the system
spectrum can be strongly affected by tunnel coupling.1–4 Op-
tical spectra of closely spaced structures indeed show clear
manifestations of such tunneling-related effects.5–9 Due to
strong delocalization of carrier states over the double dot
structure, analogous to a chemical covalent bond, such struc-
tures are often referred to as QD molecules �QDMs� or arti-
ficial molecules.

The properties of such artificial molecules are also af-
fected by phonon-related processes which are inevitable in a
crystal environment. Such effects will limit the feasibility of
building QDM-based quantum-coherent devices by provid-
ing a dephasing channel for both charge10–16 and spin17

states. Depending on the form and localization character of
the wave functions, such phonon-assisted transitions may ei-
ther take place between two delocalized states or involve
charge redistribution when an electron dissipatively tunnels
to a different dot. In the latter case, the electron spin can be
conserved,18 which can be used to control the spin state of a
magnetic impurity in one of the QDs.19 Dissipative tunneling
is also interesting in a two-electron configuration, where a
transition to a doubly occupied state is only possible in a
singlet configuration. This discrimination leads, on one hand,
to pure dephasing of singlet-triplet superpositions17 but, on
the other hand, might be used to speed up the proposed
singlet-triplet measurement protocols.20

From the experimental point of view, dissipative carrier
transfer in self-assembled structures has been studied with
optical spectroscopy methods �time-integrated and time-
resolved photoluminescence, and photoluminescence excita-
tion experiments� both in lateral double-dot systems18,19,21 as

well as in stacked QDMs �Refs. 22–34� and QD chains �both
stacked and lateral�.35,36 Various mechanisms have been in-
voked to account for the observed properties. In most cases,
the kinetics is attributed to tunneling.21–28,35 In some other
experiments,30–32 signatures of radiative �Förster-type� trans-
fer have been observed. Coulomb scattering29 and thermally
activated processes27,34 also seem to play an important role,
at least in some systems.

The variety of investigated structures and probable trans-
fer mechanisms is reflected in a relatively wide distribution
of measured transfer times. While the transfer in general
takes place on time scales shorter or comparable with the
exciton lifetime �which is necessary for the process to be
observable in an optical experiment�, the observed times
range from tens of picoseconds22,32 to several nanosecond.23

In most cases, however, transfer times between hundreds of
picosecond and a few nanoseconds are observed. This ex-
perimental situation indicates that carrier kinetics in coupled
QD structures is a rich and complex problem which most
likely cannot be solved by proposing a unique, universal
theory. Therefore, it seems reasonable to undertake a system-
atic theoretical study of various carrier transfer processes and
to identify conditions in which one or another mechanism is
expected to dominate the system properties. Such a theoret-
ical analysis of individual transfer mechanisms has in fact
already started with several works devoted to electron tun-
neling �in simplified confinement models� �Refs. 10–16� and
some studies of the Förster-type transfer.37–40

In this paper, we develop a theoretical description for
phonon-assisted relaxation and charge transfer �tunneling� in
a structure composed of two vertically stacked quantum dots
formed in the Stransky-Krastanov self-assembly process by
strain-induced spontaneous QD nucleation in the second
layer on top of the QDs formed in the first layer.41,42 A reli-
able calculation of tunneling rates requires reasonably pre-
cise knowledge of the electron wave functions. For a strained
self-assembled structure presently under consideration, this
implies the need to calculate the strain and then to find the
single-particle wave functions, e.g., by a k ·p method. Then,

PHYSICAL REVIEW B 81, 245312 �2010�

1098-0121/2010/81�24�/245312�12� ©2010 The American Physical Society245312-1

http://dx.doi.org/10.1103/PhysRevB.81.245312


Coulomb interactions can be included for a two-electron sys-
tem within the standard configuration-interaction approach.
The k ·p method for strained semiconductor heterostructures
is a well-established procedure that has been used for QDs,
QDMs, and other nanostructures.43–46 Recently, this method
has been combined with the standard approach to carrier-
phonon coupling in a study of confined polarons.47 Here, we
apply a simplified version of this method48 assuming a cy-
lindrical symmetry of the structure. This is motivated not
only by economy of computations but, more importantly, by
the need to derive the wave functions in a form suitable for
efficient calculations of carrier-phonon couplings and the fol-
lowing modeling of phonon-assisted relaxation.

The paper is organized as follows. In Sec. II, we define
the model of the system under study. In Sec. III, we discuss
the strain fields in the structure. The one-electron and two-
electron states in the QDM are found in Secs. IV and V,
respectively. In Sec. VI, phonon-assisted relaxation for one-
and two-electron states is discussed. Concluding remarks and
discussion are contained in Sec. VII.

II. MODEL

We consider a QDM formed by two self-assembled InAs
dots in a GaAs matrix. The geometry of the structure as used
in our modeling is shown in Fig. 1. The QDs are modeled as
two spherical segments with base radii r1, r2 and heights H1,
H2, respectively. Throughout the paper, the aspect ratio of the
two dots will be held constant, H1 /r1=H2 /r2=0.37. Both
dots are placed on a wetting layer with thickness HWL. The
dots are separated by a distance D �base to base�. A diffusion
layer of a very small thickness Hdiff=0.3 nm is included at
the contact between the two materials, in which the InAs
concentration varies linearly. Apart from this, the InAs con-
tent is assumed to be 100% inside the dots and the wetting
layers and 0% outside. The parameters of the modeled struc-
ture are collected in Table I.

Our model includes the case of a single electron in the
QDM as well as of two electrons coupled by the Coulomb
interaction. The carriers interact with bulk acoustic phonons
via standard deformation potential and piezoelectric interac-
tion mechanisms.

The modeling proceeds in three steps: �1� determination
of the strain distribution; �2� calculation of the wave func-

tions for single- and two-electron states; and �3� calculation
of relaxation rates. As each of these steps involves a specific
formalism, the corresponding details of the model will be
subsequently introduced in the following sections.

III. STRAIN

In this section, we calculate the strain present in the inho-
mogeneous structure.

The strain fields in the system will be described by the
strain tensor,

�ij�r� =
1

2
� �ui�r�

�rj
+

�uj�r�
�ri

� ,

where u�r� is the displacement field at the point r in the
crystal. The elastic energy of the inhomogeneous system is44

Eel =� d3r�1

2
C11��xx

2 + �yy
2 + �zz

2 � + C12��yy�zz + �yy�xx

+ �xx�zz� + 2C44��yz
2 + �zx

2 + �xy
2 � − ���xx + �yy + �zz�� .

�1�

Here Cij are position-dependent elastic constants �see Table I
for the values�, �= �C11+2C12��aI /aG−1� in a QD and �
=0 in GaAs, where aI and aG are the lattice constants of InAs
and GaAs, respectively. The last term in Eq. �1� accounts for
the mismatch of the lattice constants, shifting the equilibrium
of the InAs crystal lattice to the state appropriately stretched
with respect to the ideal InAs crystal. Since the strain is
calculated with respect to the GaAs lattice and GaAs crystal
coordinates are used, after minimizing the strain energy the
results for the InAs dots must be rescaled to yield physical
strain, according to44

FIG. 1. �Color online� The geometry of the QDM structure.

TABLE I. System parameters used in the calculations.

GaAs InAs

Lattice constant �nm� a 0.56532 0.60583

Elastic constants �N /m2� C11 12.11�1010 8.329�1010

C12 5.48�1010 4.526�1010

C44 6.04�1010 3.959�1010

Band structure parameters �eV� Ec0 0.95 0

Ev0 −0.57 −0.42

� 0.34 0.43

P0 9.89 9.19

Deformation potentials �eV� ac −9.3 −6.66

av 0.7 0.66

b −2.0 −1.8

Speed of sound �m/s� cl 5150

ct 2800

Crystal density �kg /m3� � 5300

Piezoelectric constant �C /m2� dP −0.16

Relative dielectric constant �r 12.9
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�ij
phy =

aG

aI
�ij − �ij�1 −

aG

aI
� . �2�

For an axially symmetric structure, it is convenient to
perform the computation in cylindrical coordinates �� ,� ,z�.
Therefore, we denote the components of the displacement in
the local reference frame as u� ,u� ,uz and define the corre-
sponding components of the strain tensor,

��� =
�u�

��
,

��� =
1

�
� �u�

��
+ u�� ,

��� = ��� =
1

2�
� �u�

��
− u�� ,

��z = �z� =
1

2
� �u�

�z
+

�uz

��
� ,

��z = �z� =
1

2
� �u�

�z
+

1

�

�uz

��
� .

We will look for the minimum of Eel in the class of axially
symmetric displacement fields, that is, u�=0 and �ur /��
=�uz /��=0. With this assumption, the integration over � in
Eq. �1� can be performed analytically and one gets

Eel = 	� d��� dz�C11�zz
2 + D����

2 + ���
2 � + 4C44��z

2

+ F������ + 2C12�zz���� + ���� − 2����� + ��� + �zz�	 ,

�3�

where D=3C11 /4+C12 /4+C44 /2 and F=C11 /4+3C12 /4
−C44 /2.

The displacement field minimizing Eel is found by the
conjugate gradient method on a square grid of 1000 points
along z and 666 point along �, representing a cylinder with
the height of 60 nm and the radius of 40 nm. The boundary
conditions represent displacements due to the equilibrium
strain in a system with two wetting layers, which corre-
sponds to the actual situation at large distances from the dots.
A combination of discretizations with forward and backward
representations of derivatives is used to avoid discretization-
induced oscillations.44 As an example of the result, a strain
map representing the hydrostatic and axial strain across the
structure for a selected geometry is shown in Fig. 2.

IV. SINGLE-ELECTRON STATES

In this section, we calculate approximate wave functions
for a single electron confined in the nanostructure. This is
done within a variational multicomponent envelope function
scheme48 based on the fact that the confinement volume is
large compared to the crystal lattice cell and that the local
system parameters change relatively slowly on atomic scales.

In this approach, one finds the values of effective masses and
band edges at a given point by solving the bulk k ·p model
with strain and composition equal to those present at a given
point. This yields the band-edge position, which is used as
the local effective potential, as well as the band curvatures,
which define the components of the effective-mass tensor at
a given point of the inhomogeneous heterostructure.

The conduction-band structure in a strained system is de-
termined from the eight-band k ·p �Kane� Hamiltonian with
strain-induced terms �Bir-Pikus Hamiltonian� using the Löw-
din elimination.49 The part of the Hamiltonian coupling
conduction- and valence-band states is50

Hc−v = 
e↑��− �3V†hh↑
 − U��2lh↑
 − so↑
� − V�lh↓


− �2so↓
�	 + 
e↓��− �3Vhh↓
 − U��2lh↓
 + so↓
�

+ V†�lh↑
 + �2so↑
�	 + H.c.,

where “e,” ”lh,” “hh,” and “so” denote the electron, heavy-
hole, light-hole, and spin-orbit split-off subbands, ↑ and ↓
represent the spin orientation in a given subband,

U =
1
�3

P0�kz + �
j

� jzkj�
and
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FIG. 2. �Color online� The strain distribution in the structure for
D=12 nm, r1=10 nm, r2=10.5 nm, H1=3.7 nm, and H2

=3.885 nm. In �a�, the hydrostatic strain is shown; in �b�, the axial
strain �zz− ����+���� /2 is shown.
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V =
1
�6

P0�kx − iky − �
j

��xj − �yj�kj� ,

where P0 is proportional to the interband momentum matrix
element �see Table I for parameter values�. The conduction-
band part of the Hamiltonian is

Hc = �Ec0 +
�
k�2

2m0
+ ach��
e↑�e↑
 + 
e↓�e↓
� ,

where m0 is the free electron mass, Ec0 is the conduction-
band edge in a bulk unstrained crystal, ac is the conduction-
band deformation potential, and h=Tr � is the hydrostatic
strain.

As we are interested in the corrections to the conduction-
band energies up to k2 and the off-diagonal elements U and V
are proportional to k we only need the conduction-valence-
band energy difference at k=0. In this limit, the diagonal
terms for the valence-band states are

Ehh = Ev0 − p − q ,

Elh = Ev0 − p + q ,

Eso = Ev0 − � − p ,

where Ev0 is the valence-band edge of an unstrained crystal,
� is the spin-orbit split-off parameter of an unstrained crys-
tal, p=avh,

q = b��zz −
1

2
���� + ����� ,

and av ,b are valence-band deformation potentials. The val-
ues of material parameters are given in Table I.

Neglecting the strain-related terms in U and V, which are
much smaller than the purely kinetic ones, we get the
conduction-band energy up to the second order in k,

E�k� = Ec0 + ach +

2k�

2

2m�

+

2kz

2

2mz
,

where the in-plane and z components of the effective-mass
tensor are

m�
−1 = m0

−1�1 +
EP

2�Ehh
+

EP

6�Elh
+

EP

3�Eso
�

and

mz
−1 = m0

−1�1 +
2EP

3�Elh
+

EP

3�Eso
� ,

where EP=2m0P0
2 /
2 and �Ei=Ec0+ach−Ei, for i

=hh, lh, so. Note that �Ei are position dependent.
The dynamics of an electron in the strained nanostructure

in the present approach is defined by the conduction-band
edge at a given point, Ec�� ,z�=Ec0+ach�� ,z� �which de-
pends on the local strain�, and on the effective masses, which
also vary across the structure. Figure 3 shows an example of
the profiles of the conduction-band edge as a function of z at
three different values of �. In Fig. 4, we show the spatial
maps of the radial and axial components of the electron ef-

fective mass. Some strain-induced anisotropy of the effective
mass can be seen. The value of the radial component, m�

�0.05m0 is close to the bulk GaAs value and much higher
than the bulk InAs value of 0.023m0. It is roughly constant
within the volumes of the two dots. The axial component mz
is lower �about 0.04m0� and shows some gradient along the
QD axis with higher values toward the top.

The envelope function of an electron is found from the
Schrödinger equation with the Hamiltonian

0.5
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FIG. 3. �Color online� The band-edge profiles along z for three
fixed values of �=0.3 nm �red solid line�, 3 nm �blue dashed line�,
and 8 nm �green dotted line� for the structure as in Fig. 2.
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FIG. 4. �Color online� The components of the electron effective
mass for the structure as in Fig. 2. �a� The radial component, m�;
�b� the axial component, mz.
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H = −
�

�x


2

2m���,z�
�

�x
−

�

�y


2

2m���,z�
�

�y
−

�

�z


2

2mz��,z�
�

�z

+ Ec��,z� .

Following the concept of “adiabatic” separation of
variables,51 we first numerically solve the one-dimensional
equation along the strongest confinement direction at each �,

�−
�

�z


2

2mz��,z�
�

�z
+ Ec��,z�����,z� = E������,z� .

The lowest two solutions to this equation, �1,2�� ,z�, repre-
sent the lowest subband of confined states in the double-well
system. The corresponding two branches of �-dependent ei-
genvalues, E1,2��� can be interpreted as effective potentials
for the radial problem.

Next, we apply the Ritz variational method,52 looking for
the stationary points of the functional

F��	 = �
H
��

in the class of normalized ansatz functions

���,z,�� =
1

�2	
�
�

����,z�����eiM�, �4�

where M is the angular momentum. Upon transforming to
cylindrical coordinates and imposing the normalization via
the Lagrange multiplier �, we write the functional F��	 in
the explicit form,

F��	 = �
��
�

0

�

�d��
−�

�

dz

2

2m���,z�

�
d

d�
�����,z�����	�

d

d�
�����,z�����	

+ �
�
�

0

�

�d��
�����E���� +

m2

�2 �����

− ���
�
�

0

�

�d��
�������� − 1	 .

We discretize the functional F��	 on the same lattice that
was used in the computation of the strain. As the functional
is quadratic, the stationarity requirement with respect to the
values at the discrete points can easily be cast into the form
of a matrix eigenvalue problem for the components �1 ,2�.
By virtue of the Ritz theorem,52 the corresponding eigenval-
ues �n, n=0,1 , . . . approximate the energy eigenvalues of the
original problem, while the eigenvectors, representing the
components �1

�n���� ,2
�n����	 at the discrete lattice points in

the radial direction, are used to construct the electron eigen-
functions �n�r���n�� ,z ,�� according to the ansatz formula
�4�. In this paper, the discussion will be restricted to the two
lowest states for M =0, corresponding to the tunnel-split
ground state of the double-dot system.

The single-particle eigenenergies found within our ap-
proach for three different distances D between the dots are
shown in Figs. 5�a�–5�c�. In these calculations, the shape of
the lower dot is kept constant, while the base radius r2 of the

upper dot and its height H2 are varied, with H2 /r2 constant.
Electronic �tunnel� coupling between the dots leads to the
appearance of an anticrossing pattern near the point where
the dots become equal. The width of the anticrossing is 2t,
where the phenomenological “tunnel coupling” t is very well
fitted by the formula ln t / t0=−�D, with �=0.59 nm−1 and
t0=1.58 eV. The value of � is consistent with the one-
dimensional semiclassical formula �=�2mz�V−E� /
 if one
uses mz=0.062m0 as found in the area between the dots �see
Fig. 4�, the potential barrier height V=1010 meV �Fig. 3�,
and the electron energy E=800 meV �Fig. 5�.

In accordance with the spectral anticrossing, the electron
occupations for the ground and first excited states are trans-
ferred between the dots, as shown in Figs. 5�d�–5�f�. The
exact resonance point, where the two occupations are equal
to 1/2 for both states �corresponding to delocalized symmet-
ric and antisymmetric wave functions�, appears for r2
slightly smaller than r1 which results from the strain field in
the absence of mirror symmetry in the structure.

The procedure proposed here, involving the variational
problem for a two-component envelope, allows for mixing of
the two manifolds of states related to the two functions
�1�� ,z� and �2�� ,z�, which is essential when the two QDs
are of similar size or when the thinner dot has a larger in-
plane size, so that a crossing of the one-dimensional solu-
tions appears at a certain value of �.

V. COULOMB INTERACTION AND TWO-ELECTRON
STATES

We will find the two-electron states in the restricted basis
of low-energy configurations of the two-electron system. We
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FIG. 5. �Color online� ��a�–�c�	 The single-electron energy lev-
els for three structures with a fixed size of the lower dot as a func-
tion of the size �base radius r2� of the upper one for three dot
separations as shown. Here r1=10 nm, H1=3.7 nm, and H2 /r2

=0.37. The energy reference level is 0.8 eV above the conduction-
band edge of unstrained bulk InAs. ��d�–�f�	 The corresponding
probabilities plow of finding the electron in the lower half of the
system as a function of the size of the upper dot in the ground state
�labeled “g”� and in the first excited state �labeled “e”� of the
system.
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discuss the situation when the energy difference between the
ground states in the two dots is smaller than the intradot
excitation energy �the latter is about 50 meV�. Then the two
lowest single-particle states found in Sec. IV correspond to
an electron in the ground state of one of the dots or, near the
resonance, to a delocalized superposition of the two ground
states.

Let an,� ,an,�
† denote the annihilation and creation opera-

tors for an electron in the state n=0,1 with the wave func-
tion �n�r� and spin �. The low-energy two-electron configu-
rations split into one triplet state �of no interest in the present
discussion� and three singlet states,


0� = a0↑
† a0↓

† 
vac� , �5a�


1� =
a0↑

† a1↓
† + a1↑

† a0↓
†

�2

vac� , �5b�


2� = a1↑
† a1↓

† 
vac� , �5c�

where 
vac� is the vacuum �empty dot� state.
The Hamiltonian of the interacting two-electron system

has the form

H = �
n,�

�nan�
† an� +

1

2�
ijkl

�
�,��

vijklai�
† aj��

† ak��al�, �6�

where

vijkl =
e2

4	�0�r
� d3r� d3r��i

��r�� j
��r��

1


r − r�

�k�r���l�r� .

�7�

Here e is the electron charge, �0 is the vacuum permittivity,
and �r is the dielectric constant of the semiconductor. Some
technical details concerning the calculation of Coulomb ma-
trix elements for the wave functions obtained within the
variational two-component envelope function scheme in Sec.
IV are given in the Appendix.

In Fig. 6, we show the three lowest spin-singlet eigen-
states of the interacting two-electron system as a function of
the size of the upper dot with the lower dot kept fixed. The
central resonance occurs when the dots are close to identical
and involves the doubly occupied configurations �0,2� and
�2,0� which, at the resonance point, have similar energy. This
anticrossing is very narrow �less than 0.1 meV for D
=12 nm� since the two states involved differ by the location
of both electrons �see Figs. 6�d�–6�f�	 and, therefore, are
coupled only by very small exchangelike Coulomb terms.
Only for the smallest interdot distance considered, D
=9 nm, this splitting becomes larger due to stronger mixing
of configurations and incomplete electron localization in the
two states �which allows the configurations to be coupled by
single-electron tunneling�. The other two anticrossings occur
at the degeneracy point between the singly occupied �1,1�
configuration �favored by the Coulomb repulsion� and the
�0,2� or �2,0� configuration with two electrons in the larger
dot. One can notice that these two splittings are wider than
those appearing between the single-electron states, shown in
Fig. 5 �for instance, 2 vs 1.5 meV for D=12 nm�. This is due

to the fact that the anticrossing of two-electron configura-
tions is enhanced by Coulomb terms.15

VI. PHONON-ASSISTED RELAXATION

In this section, we discuss the phonon-assisted relaxation
between the single-electron states and between the two low-
est two-electron states.

The coupling between the electrons and phonons is de-
scribed by the Hamiltonian

He-ph = �
nm,�

an,�
† am,��

s,q
Fs,nm�q��bs,q + bs,−q

† � , �8�

where the coupling constants Fs,nn��q� have the symmetry
Fs,nn��q�=Fs,n�n

� �−q�. The interlevel energy distance in our
structure is smaller than the optical phonon energy. There-
fore, only acoustic phonons are relevant in our model. We
include the deformation-potential �DP� coupling to
longitudinal-acoustic �LA� phonons and the piezoelectric
�PE� coupling to LA as well as transverse-acoustic �TA�
phonons. The coupling constant for the DP coupling mecha-
nism is given by

Fl,nn�
DP �q� =� 
q

2�Vcl
avFnn��q� , �9�

where � is the crystal density, V is the normalization volume
of the phonon modes, cl is the longitudinal speed of sound
�see Table I for parameter values�, and the form factor is
defined as
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FIG. 6. �Color online� ��a�–�c�	 The two-electron energy levels
for three structures with a fixed size of the lower dot as a function
of the size �base radius r2� of the upper one for three dot separations
as shown. Here r1=10 nm, H1=3.7 nm, and H2 /r2=0.37. The en-
ergy reference level is 1.6 eV above the conduction-band edge of
unstrained bulk InAs. In �b�, the electron configurations correspond-
ing to the spectral branches are shown with the first and second
digits corresponding to the number of electrons in the upper and
lower dot, respectively. ��d�–�f�	 The corresponding average num-
bers of electrons in the lower half of the system as a function of the
size of the upper dot in the ground state �labeled g� and in the first
and second excited states �labeled “e1,e2”� of the system.
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Fnn� =� d3r�n
��r�eiq·r�n��r� . �10�

The coupling element for PE interactions reads

Fs,nn�
PE �q� = − i� 


2�Vcsq

dPe

�0�r
Ms�q̂�Fnn��q� , �11�

where cs is the speed of sound �s=l , t denotes the LA and TA
phonon branch, respectively� and dP is the piezoelectric con-
stant. The function Ms�q̂� does not depend on the value of
the phonon wave vector but only on its orientation. For a
zinc-blende structure, it reads

Ms�q̂� = q̂x��ês,q�yq̂z + �ês,q�zq̂y	 + q̂y��ês,q�zq̂x + �ês,q�xq̂z	

+ q̂z��ês,q�xq̂y + �ês,q�yq̂x	 , �12�

where ês,q is the unit polarization vector for the phonon wave
vector q and polarization s, and q̂=q /q. We choose the fol-
lowing phonon polarization vectors:

êl,q � q̂ = �sin � cos �,sin � sin �,cos �� ,

êt1,q = �− sin �,cos �,0� ,

êt2,q = �cos � cos �,cos � sin �,− sin �� , �13�

for which the functions Ms�q̂� read

Ml�q̂� =
3

2
sin�2��sin � sin�2�� ,

Mt1�q̂� = sin�2��cos�2�� ,

Mt2�q̂� = sin ��3 cos2 � − 1�sin�2�� . �14�

In what follows, we will assume that higher states are
separated by an energy much larger than kBT, where kB is the
Boltzmann constant and T is the temperature. Then, the ki-
netics leading to thermalization of the occupations of the two
relevant levels can be characterized by the occupation of the
upper state,

n�t� − neq = �n0 − neq�e−�t,

where n0 is the initial occupation, � is the relaxation �ther-
malization� rate, and

neq =
1

e�E/�kBT� + 1

is the equilibrium occupation, where �E�0 is the energy
separation between the two states.

Thus, given the initial condition and the energy difference
�E, the thermalization kinetics is determined by the relax-
ation rate � �or the relaxation time �=�−1� which will be
found in the following sections, first for a single-electron,
then for the two-electron case.

A. Single-electron relaxation

For a single-electron system, the thermalization rate � can
be found directly from Eq. �8� using the Fermi golden rule.
The result can be written in the form

� = 2	�2nB��E� + 1	J��E/
� , �15�

where

nB��E� =
1

e�E/�kBT� − 1

is the Bose distribution and the spectral density J��� is given
by

J��� =
1


2�
q,s


Fs,01�q�
2��� − �q,s� , �16�

where Fs,01�q� is the total coupling for the branch s, that is,
Fl,01�q�=Fl,01

�PE��q�+Fl,01
�DP��q� and Fs,01�q�=Ft,01

�PE��q� for s
=t1 , t2. In fact, due to different parity of the DP and PE
couplings �as functions of q� the two contributions do not
interfere and the spectral density �hence, also the thermaliza-
tion rate� can be split into the corresponding two parts
J�DP���� and J�PE����.

In order to find the thermalization rate, we calculate the
form factors defined in Eq. �10� using the single-electron
wave functions found for the strained double-dot structure in
Sec. IV �see the Appendix�. From these, we find the coupling
constants given by Eqs. �9� and �11� and the corresponding
spectral densities given by Eq. �16�. The rate � then follows
from the Fermi golden rule formula, Eq. �15�.

The single-particle relaxation rates are shown in Figs.
7�a�–7�c� as functions of the upper dot size for three values
of the interdot spacing �for the same sample geometries as in
Fig. 5� and at three different temperatures. These three plots
show that both the magnitude and the size dependence of the
relaxation rate is different in these three cases. The interpre-
tation of this behavior can be based on the Fermi golden rule
in the form of Eq. �15�, where the essential role is played by
the spectral density defined in Eq. �16� and plotted �for D
=12 nm� in Fig. 8.

The overall magnitude of the spectral density depends on
the spatial overlap between the wave functions correspond-
ing to the states involved in the transition. It is, therefore,
large at the resonance and becomes smaller as the system is
shifted off the resonance point Fig. 8�a�. Apart from this, the
spectral density shows oscillations in its high-frequency tail
which are due to the essentially one-dimensional emission of
short wavelength phonons along the strongest confinement
direction.53 As we deal with two confinement centers dis-
placed along the same direction, interference effects appear
and the phonon emission amplitude has a maximum when-
ever �= �2n+1�	c /D for an integer n. Moreover, the enve-
lope of the spectral density decays at high frequencies since
the short wavelength phonons are not effectively coupled to
the relatively weakly confined electron states.

In the case of closely stacked dots �Fig. 7�a�	, the tunnel
splitting of the QDM electron states is large and the fre-
quency of the emitted phonons always lies far in the tail of
the spectral density. This is reflected by the very low relax-
ation rate. The oscillations of the spectral density are clearly
marked in the values of the relaxation rate. When the dots are
separated by a larger distance �Fig. 7�b�	, the resonance be-
comes narrower and now the resonant frequency lies in the
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region of large spectral density. When moving away from the
resonance, the relaxation rate drops down primarily due to
the decreasing overlap of the wave functions. This leads to a
narrow peak in the dependence of the relaxation rate around
the resonance value. Still, oscillations are visible in the
slopes of this peak. For even larger interdot distances �Fig.
7�c�	, the resonance becomes very narrow. Correspondingly,

the overlap between the wave functions decays almost com-
pletely already when the size of the upper dot is changed by
a fraction of a nanometer from the resonant value. Therefore,
the relaxation rate is large only in a very narrow region
around the resonance. The rates are also generally lower than
in the previous case, which results from the dependence of
the spectral density at low frequencies ���5 for the DP cou-
pling and ��3 for the PE coupling�.

The interplay between the shape and magnitude of the
spectral densities for different coupling mechanisms �Fig.
8�b�	 and the electron energies near the resonance is reflected
also by the different contributions from the DP and PE cou-
plings to the total relaxation rates. As can be seen in Figs.
7�d�–7�f�, the DP coupling dominates for large energy split-
tings. The reason is that this coupling is isotropic and in-
volves LA phonons which have higher energies. On the con-
trary, the piezoelectric coupling is anisotropic and, according
to Eq. �14�, is suppressed for emission along the z direction
that is preferred at high frequencies. The situation changes at
low-energy splittings where the low-frequency properties of
the spectral density are relevant. As the spectral density for
the piezoelectric coupling decreases at �→0 more slowly
than that corresponding to the DP coupling the PE coupling
is the dominating mechanism in the case of narrow anticross-
ing, as can be seen in Fig. 7�f�. For very low frequencies, all
the contributions to the spectral density are small, hence the
phonon-assisted relaxation process becomes ineffective for
small energy splitting. This is manifested by a dip in the
thermalization rate at the exact resonance for D=12 nm
�Fig. 7�f�	.

In Fig. 9 we show the energy splitting between the two
lowest-energy levels and the corresponding values of the
thermalization rates �=�−1 as a function of the interdot dis-
tance D for two system geometries: slightly different dots
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FIG. 7. �Color online� ��a�–�c�	 Thermalization rate for one-
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�Figs. 9�a� and 9�c�	 and identical dots �Figs. 9�b� and 9�d�	.
The values of the rates show oscillations, resulting from the
variation in the energy-level splitting and corresponding to
the oscillations of the spectral density, as discussed above.
The maximum value is quite large and corresponds to relax-
ation times of several picosecond, which results from the
relative proximity of the resonance �identical dots� in both
presented cases. The maximum goes down and shifts to
lower distances as the dots become different. At large dis-
tances the relaxation becomes inefficient in any case. In an
attempt �not shown� to compare the decrease in the rates at
large D with an exponential law �as observed, at least ap-
proximately, in some experiments22–24,26�, we have found a
roughly exponential decay with a coefficient consistent with
the value of � found in Sec. IV. This decay is, however,
strongly modulated by oscillations. This results from a small
energy scales in our model which is comparable to strain-
related effects as the dots are moved with respect to each
other. This is visible in Figs. 9�a� and 9�c�, where the energy-
level separation does not tend to a constant asymptotic value
at large D as would be expected for a simple model of two
potential wells with fixed shapes.

B. Relaxation in two-electron systems

In this section, we calculate the transition rates for
phonon-assisted relaxation between two-electron states 
�i�,
obtained from the diagonalization of Hamiltonian �6� in the
restricted basis formed by the states 
0�, 
1�, and 
2� �Eqs.
�5a�–�5c�	. We first project the carrier-phonon Hamiltonian
�8� onto the two-electron subspace,

He-ph
�2� = �

ij


�i�� j
�
s,q

Gs,ij�q��bs,q + bs,−q
† � ,

where the coupling constants

Gs,ij�q� = �
nm,�

�i
an,�
† am,�
� j�Fs,nm�q�

are found based on the numerical results for the states 
�i�.
We restrict the discussion to transitions between the two low-
est states 
�0� and 
�1� separated by an energy splitting �E.
In the Fermi golden rule approximation, the rate for the re-
laxation of the two occupations to equilibrium is

��2� = 2	�2nB��E� + 1	J�2���E/
� ,

where the spectral density J�2���� is given by

J�2���� =
1


2�
q,s


Gs,01�q�
2��� − �q,s� .

The inverse relaxation times �−1=��2� resulting from these
calculations are presented in Fig. 10. Like in the single-
electron case, the energy-level splitting in the case of rela-
tively closely spaced dots �D=9 nm� is very large and the
resonance is very broad which results in very long relaxation
times which do not vary considerably over the parameter
range studied �Fig. 10�a�	. For such high transition energies,
only LA phonons contribute to the process via DP coupling

�Fig. 10�d�	. At larger interdot distances, the transition rates
become large around the resonance points corresponding to
the anticrossing of �1,1� and �2,0� or �0,2� configurations.
The structure of the relaxation rate as a function of the upper
dot diameter r2 is similar to that discussed in the single-
electron case above. Also the relative contributions form dif-
ferent coupling mechanisms behave in the same way with the
piezoelectric coupling dominating at low energies. In gen-
eral, the relaxation rates are similar to those found in the
single-electron case since both these processes are physically
very similar. In both cases, the electron tunnels between the
dots and simultaneously emits one phonon. The only differ-
ence is that in the single-electron case it tunnels toward an
empty QD, whereas in the two-electron case, there is already
another electron. This basically leads to shifts �due to Cou-
lomb interaction� of the parameter regimes where the relax-
ation is most efficient from the region of identical dots to the
asymmetric situation where the difference of confinement
energies compensates for the Coulomb repulsion. A similar
conclusion has been reached in the case of gated QDM struc-
tures modeled by Gaussian potential wells.15

VII. CONCLUSION

We have studied phonon-assisted relaxation �thermaliza-
tion� for single-electron and two-electron configurations in
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FIG. 10. �Color online� ��a�–�c�	 Thermalization rate between
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self-assembled quantum dots. In order to describe the elec-
tron states in a strained structure in a possibly realistic �but
still relatively simple� way and to reliably model the effect of
the system geometry we have developed a generalized, mul-
ticomponent envelope function formalism based on the
variational principle.

Our results show that the single phonon relaxation is very
efficient in an extremely narrow range of relative QD sizes
near the anticrossings of energy levels but only for systems
with a sufficiently large interdot distance �several nano-
meter�. In this case, the relaxation times can be as low as 1
ps, both in the single-electron and two-electron cases. The
range of efficient relaxation becomes narrower as the dots
are more distant from each other. Both coupling channels,
piezoelectric and deformation potential, are important for the
overall relaxation rate. The former dominates at low �submil-
lielectron volt� transition energies.

When the distance between the dots becomes smaller than
about 10 nm, the energy-level splitting becomes too large to
be spanned by a single acoustic phonon �but still to small for
an optical one�. In this range of closely stacked dots, the
tunneling times increase by orders of magnitudes and take
values in the nanosecond range. For such small interdot dis-
tances, the energy splitting between the two lowest states is
dominated by tunnel coupling and depends weakly on the
size difference. As a result, the efficiency of the relaxation
process remains nearly constant over a wide range of dot
sizes. One can expect, however, that two-phonon processes54

can be important in this range of parameters, in particular,
for energy splittings exceeding the optical-phonon energy. In
general, decoherence in such systems may be dominated by
pure dephasing due to occupation-conserving phonon
scattering.55

Our findings seem to be consistent with the general fea-
tures of experimental observations. The size range where the
relaxation is very efficient �on picosecond time scales� is
extremely narrow and does not exceed a few angstrom,
which is comparable to the lattice constant of GaAs. This
means that such an efficient relaxation between the two low-
est states in self-assembled quantum dot molecules is a rather
rare phenomenon which occurs only for very finely tuned
�accidentally or intentionally� dots and is unlikely to be ob-
served in a typical sample. Therefore, we conclude that re-
laxation times on the order of at least hundreds of picosec-
ond should be typical. The coupling between the dots
decreases exponentially with the distance between them
which reduces the overlap between the wave functions.
Therefore, phonon-assisted tunneling for a spontaneously
formed pair of nonidentical dots should become inefficient as
the spatial separation between the dots grows beyond a cer-
tain distance, as is indeed observed in experiments.22–24,26 In
the case studied here, that is, single-phonon relaxation be-
tween states separated by a few millielectron volts in energy,
the relaxation rates undergo oscillations as functions of the
geometrical parameters due to a structured nature of the pho-
non reservoir and the resulting interference effects. One
should note, however, that most of the available experimen-
tal data correspond to systems which much larger energy
splittings.

A more quantitative comparison is possible in the case of
the measurements presented in Ref. 28. Here, electron tun-
neling �that is, a transition between spatially direct and indi-
rect exciton states� has been studied for a QDM with a fixed
10 nm spacing and energy-level difference of a few mil-
lielectron volts, which corresponds more closely to the
physical situation of our model. Our calculations for such
parameter range yield transfer times in the range of hundreds
of picosecond, which reasonably agrees with the measured
time of 0.5 ns �note that a slightly different material system
was used in that experiment and that some details of the
system geometry are not exactly known�. It will be interested
to include the electric field in our model and to seek a closer
correspondence with the experiment, which is planned as a
future work.
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APPENDIX: FORM FACTORS AND COULOMB
MATRIX ELEMENTS

In this appendix, we briefly summarize the method of
calculating the form factors and Coulomb matrix elements
based on the wave functions obtained within the variational
multicomponent envelope function formalism using the sim-
plification offered by a cylindrically symmetric system.

Using the identity

1


r − r�

=

1

�2	�3� d3q
4	

q2 eiq·�r−r��,

one writes the Coulomb matrix element vijkl given by Eq. �7�
in the form

vijkl =
e2

�2	�3�0�
� d3q

q2 Fil�q�Fkj
� �q� , �A1�

where the form factors are given by Eq. �10�.
We will use cylindrical coordinates for the vector r

= �� cos �� ,� sin �� ,z	 and spherical coordinates for the
vector q= �q� cos � ,q� sin � ,qz	, where q�=q sin � and
qz=q cos �. For wave functions in the form given in Eq. �4�,
one has

Fkj�q� = F̃kj�q�,qz�iMj−Mkei�Mj−Mk��, �A2�

where

F̃kj�q�,qz� = �
�,�
�

0

�

�d������,qz��
�k�����

�j����

� JMj−Mk
�q��� . �A3�

In Eqs. �A2� and �A3�, we denoted the angular momenta of
the two states by Mk ,Mj, used the identity

1

2	
�

0

2	

d��ei��m�−m���+a cos���−��	 = Jm�−m�a�im�−mei�m�−m��,
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where Jm is the mth Bessel function, and introduced the
quantities

�����,qz� = �
−�

�

dz����,z�eiqzz����,z� ,

which are calculated by fast Fourier transform on the grid.

Substituting Eqs. �A2� and �A3� into Eq. �A1� and inte-
grating over � one finds

vijkl = �Mi+Mj,Mk+Ml

e2

�2	�2�0�
�

0

	

d� sin ��
0

�

dq

� F̃il�q sin �,q cos ��F̃kj
� �q sin �,q cos �� .
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